
Checklist to validate repo before publishing to GitHub 

For code quality, we recommend the analysts applying good engineering practices for building their code. Some of these 
materials can be found in our Data Science rap-community-of-practice and NHSD Software Engineering data-quality-
framework. The below is only concerned with checks to ensure there is no sensitive information present, and that the 
code is safe to publish externally.  

RED Not fit for publishing - requires immediate attention 

AMBER Not fit for publishing - will require attention before external review 

GREEN Fit for publishing 

• Repository to be published on GitHub: <insert GitHub repo link here (if it exists)> 

• GitLab repository used: <insert GitLab repo link here> 

Checklist items 
Int. 

Comments & 
Suggestions 

Confirm 
suggestions have 
been implemented 

Ext. 
Comments & 
Suggestions 

RAG status 

Name of checker     

Confirm code is fit for purpose. This 
could cover: 

1. Chosen RAP level (e.g. 
Baseline/Silver/Gold) if it’s a RAP 
project. 

2. All outputs replicate what has been 
published or designed/developed 
for. Code adheres to standards for 
clarity, commenting, style, etc. if 
it’s a non-RAP project. 

    

• Confirm code has been peer 
reviewed. 

• Confirm code is tested (e.g. unit 
testing, backtesting etc.) 

• Runs in a different environment 
e.g. runs on another machine (re-
clone the repo, install the repo as a 
package, run the pipeline) and/or a 
different OS * 1 

    

Identify clearly who owns the code 
and how others can use it 

    

• Obtain approval from the owner of 
the designed products or services 
in this repo to publish code. 

• Assign the person (or team) with 
responsibility for ongoing support 
and communications for the code. 

    

 
1 Linux/Mac. Code should be put through a build test to ensure that it will run in another environment. E.g. promote code to test env, 

install and run. Or CI pipeline in gitlab using docker image – This may not apply to all projects 



• Make sure the code does not 
include any unreleased policy or 
sensitive algorithm (e.g. fraud 
detection) 

 

Secret & credentials scanning2     

• Remove (if any): all passwords, IP 
addresses, SQL Server addresses, 
AWS secrets, and identification 
info. Anything that is intended for 
internal use only. 

• Remove Git history to prevent 
leakage of credentials or secrets in 
past commits (in the fit-for-
publishing process). Downloading 
the repository’s snapshot prevents 
this from occurring. 

    

Confirm no data stored in the Git 
repo 

    

• Ensure no Jupyter notebooks exist 
in the repo. 

• Keep any binaries, build 
artefacts/package files (e.g. wheel, 
egg) etc out of the repo. Double 
check the .gitignore file contains 
this items. 

• Logs should not be stored on the 
repo 

• Code comments in the script that 
include any internal information 

• Outputs (terminal, files, and 
database) or no credentials or PII 
data printed to screen 

    

Documentation     

• README should contain clear and 
key info of the repo (guide). 

• Select an appropriate licence and 
copyright for the repo. 
Recommended Licence for the 
codebase is MIT and OGL 3.0 for 
documentation and should be 
Crown Copyright (see example). 

• Add contact details (e.g. email) so 
users can request additional 
information or improvements. 

• Share the location of any available 
synthetic data or the metadata (if 
possible). 

• Link with the corresponding 
publication report 

    

 
2 Credentials or secrets are essentially passwords that computers use for encrypted communication or access to services. For example, 

with many APIs (like the Google Maps API) you must supply a credential code to access the service. Often these codes look like long, 

strange combinations of letters and numbers (l79sDgH9s...). We must not share our passwords publicly, so you should not commit 

credentials and secrets. 



 


